Основные понятия и аксиомы статики

Теоретическая механика статика

Пара сил и ее действие на тело

Упражнение.

Определить, на каком рисунке изображена пара сил:

А. Рис. 20, а. Б. Рис. 20, б. В. Рис. 20, в. Г. Рис. 20, г.

2. Что определяет эффект действия пары сил?

А. Произведение силы на плечо. Б. Момент пары и направление поворота.

3. Чем можно уравновесить пару сил?

А. Одной силой. Б. Парой сил.

Эквивалентность пар

Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нарушается его равновесие.

Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно переносить в плоскости ее действия в любое положение.

Рассмотрим еще одно свойство пары сил, которое является основой для сложения пар.

Не нарушая состояния тела, можно как угодно изменять модули сил и плечо пары, только бы момент пары оставался неизменным.

Заменим пару сил  с плечом а (рис. 21, а) новой парой  с плечом b (рис. 21, б) так, чтобы момент пары оставался тем же.

Момент заданной пары сил . Момент новой пары сил М2 = F2b. По определению пары сил эквивалентны, т. е. производят одинаковое действие, если их моменты равны.

Если, изменив значения сил и плечо новой пары, мы сохраним равенство их моментов М1 = М2 или F1a = F2b, то состояние тела от такой замены не нарушится. Итак, вместо заданной пары  с плечом а мы получили эквивалентную пару  с плечом b.

Однако классическая механика сохраняет огромное практическое значение и теперь, если отклонения от законов Ньютона, найденные Альбертом Эйнштейном, количественно невелики. Это наблюдается в том случае, когда движение тела происходит со скоростью, значительно меньшей, чем скорость света в пустоте, и когда вблизи движущегося тела нет огромных скоплений материи, которые, например, сравнимы с количеством материи Солнца. В современной технике преимущественно применяется классическая механика Ньютона, за исключением тех случаев, когда, например, требуется исследовать движение элементарных частиц-электронов, которые движутся со скоростями порядка скорости света в пустоте. По-видимому, аналогичные задачи могут возникнуть также при развитии космонавтики.

Современником Ньютона был немецкий математик, философ, механик Готфрид Лейбниц (1660-1716). В области механики ему принадлежит установление понятия о "живой силе". В связи с этим понятием возникла дискуссия между сторонниками Декарта и Лейбница о "мерах движения". Она была прекращена Даламбером, показавшим непротиворечивость утверждений обоих ученых. Внутреннее различие между "мерами движения" было разъяснено позже философским анализом Ф. Энгельса, отметившим, что изменение "живой силы" характеризует превращение механической энергии в иные физические формы. Лейбницу наряду с Ньютоном принадлежит заслуга разработки дифференциального и интегрального исчисления.

Если сумма моментов относительно данного центра всех внешних сил равен 0, то кинетический момент механической системы сохраняет модуль и направление в пространстве. Если сумма моментов всех действующих на систему сил относительно некоторой оси равен 0, то кинетический момент механической системы относительно этой оси есть величина постоянная.
Основные понятия сопративления материалов