Основные понятия и аксиомы статики

Теоретическая механика статика

Проекция силы на ось

Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников в большинстве случаев сопряжено с громоздкими построениями. Более общим и универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями. Осью называют прямую линию, которой приписано определенное направление. Проекция вектора на ось является скалярной величиной, которая определяется отрезком оси, отсекаемым перпендикулярами, опущенными на нее из начала и конца вектора.

Проекция вектора считается положительной (+), если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (—), если направление от начала проекции к ее концу противоположно положительному направлению оси. Кулачковые механизмы. Кулачковым называется механизм, который содержит два основных звена: кулачок и толкатель, образующих высшую кинематическую пару. Кулачковые механизмы нашли широкое применение в системах газораспределения ДВС, в системах управления электроцепей в вагонах метрополитена (контроллеры).

Рассмотрим ряд случаев проецирования сил на ось:

1. Вектор силы  (рис. 12, а) составляет с положительным направлением оси х острый угол . Чтобы найти проекцию, из начала конца вектора силы опускаем перпендикуляры на ось х; получаем

.  (4)

Проекция вектора в данном случае положительна.

2. Сила  (рис. 12, б) составляет с положительным направлением оси x тупой угол . Тогда , но так как

Проекция вектора в данном случае отрицательна.

3. Сила  (рис. 12, в) перпендикулярна оси х. Проекция силы F на ось х равна нулю

Итак, проекция силы на ось координат равна произведению модуля силы на косинус угла между вектором силы и положительным направлением оси.

Силу, расположенную на плоскости хОу (рис. 13), можно спроектировать на две координатные оси Ох и Оу. На рисунке изображена сила  и ее проекции Fx и Fy, Ввиду того что проекции образуют между собой прямой угол, из прямоугольного треугольника АСВ следует:

Этими формулами можно пользоваться для определения модуля и направления силы, когда известны ее проекции на координатные оси. 

Наконец, механика проникает в другие науки, образуя на пересечении сфер влияния новые разделы (например, биомеханика). Биомеханика стремится понять механику живого. Это древний предмет, и он охватывает обширную область знаний от субклеточных элементов до отдельных клеток, растений и животных. В последние годы большинство выполненных работ посвящено физиологическим и медицинским приложениям биомеханики.

Известны вклады Г. Галилея в измерение пульса сердца, Р. Декарта (1596 - 1650) – в исследование глаза, Р. Гука (1635 - 1703) – в наблюдение клеток, Л. Эйлера – в изучение пульсирующих волн в артериях, Т. Юнга (1773 - 1829) – в теорию голоса и зрения, Г. Гельмгольца (1821 - 1894) – в теорию речи, зрения и психофизиологии, Ламба (1849 - 1934) – в обнаружение высокочастотных волн в артериях. Репутация многих известных физиологов устанавливалась на основе их деятельности, связанной с приложениями механики. Так, Стефан Хейлс (1677 - 1761) измерил артериальное давление и установил его связь с кровотечением. Он ввел понятие периферического сопротивления при течении крови и показал, что главная часть этого сопротивления падает на мельчайшие сосуды в тканях. Ж. Пуазейль разъяснил понятие вязкости и сопротивления при течении крови, а Отто Франк (1865 - 1944) – механику сердечной деятельности. Старлинг (1886 - 1926) предложил закон массопередачи через мембрану и объяснил водный баланс в нашем теле, Краф (1974 - 1949) получил Нобелевскую премию за механику микроциркуляции.

Моментом количества движения материальной точки относительно центра называется вектор, модуль которого равен произведению модуля количества движения на кратчайшее расстояние от центра до линии действия вектора количества движения, I-й плоскости в которой лежат упоминающиеся линии и направленный так, что бы глядя от его конца видеть движение, совершающееся против часовой стрелки.
Основные понятия сопративления материалов