Применение пределов в экономических расчетах

Термех статика
Элементы кинематики
Основные понятия
сопративления материалов
Теория прочности
Интенсивность отказов
Типовые примеры и
их решения
Методы расчета
Прикидочный расчет
Ориентировочный расчет
Окончательный расчет
Общее резервирование
Раздельное резервирование
Скользящее резервирование
Последействие отказов
Системы передачи
информации
Понятие предела функции
Дифференцирование и
интегрирование функций
Применение пределов в
экономических расчетах
Интергал производная
геометрический смысл
Системы линейных уравнений
Элементы теории матриц
Дифференциальное и
интегральное исчисление
экстремум функции
Неопределенный интеграл
Функция нескольких переменных
Дифференциальные уравнения
первого порядка
Производные высших порядков
Свойства производных
Производная показательной
и логарифмической функции
Импульсы
асинхронная линия
уровни сигнала
избыточность
цифровой сигнал
прямая обработка
структуры циклов
стратегии поиска
добавочный канал
регенератор
Цикловая синхронизация
Проверка по избыточности
Скорость передачи
Ошибки
Ретроспективные выставки
Синхронная передача
Контроллеры и накопители
на жестких дисках
накопитель на жестком диске
плотность записи
Способы кодирования данных
Частотная модуляция
Форматирование дисков
Зонная запись
Форматирование высокого
уровня
Температурная нестабильность
Характеристики накопителей
Парковка головок
Интерфейсы накопителей
на жестких дисках
Кабели питания Disk Manager
интерфейс SCSI plug-and-play
Конфигурирование системы
дефекты
Разбиение жестких дисков
Коды аппаратных ошибок
Неисправен блок питания
Искусство Древнего Мира
Проектирование печатных плат
Visual Basic .NET
Выражения операторы
Классы и объекты
Наследование и интерфейсы
Обработка событий
Формы Windows
Многопоточные приложения
Взаимодействие операционной
системы
Операционная система Linux
Конфигурирование X Windows
Работа и конфигурирование
GNOME и X WINDOWS

Применение пределов в экономических расчетах

Сложные проценты В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за фиксированные одинаковые интервалы времени (год, полугодие, квартал и т. д.). Время - дискретная переменная. В некоторых случаях - в доказательствах и расчетах, связанных с непрерывными процессами, возникает необходимость в применении непрерывных процентов Потоки платежей. Финансовая рента Контракты, сделки, коммерческие и производственно-хозяйственные операции часто предусматривают не отдельные разовые платежи, а множество распределенных во времени выплат и поступлений. Отдельные элементы такого ряда, а иногда и сам ряд платежей в целом, называется потоком платежей. Члены потока платежей могут быть как положительными (поступления), так и отрицательными (выплаты) величинами.

Производная, правила и формулы дифференцирования На основе определения производной и правил дифференцирования можно составить список табличных производных основных элементарных функций.

Пусть мы нашли для функции y=f(x) ее производную y ¢ = f ¢ (x). Производная от этой производной называется производной второго порядка функции f(x), или второй производной, и обозначается .

Найти производную сложной функции y= , u=x 4 +1. Замена переменной; интегрирование по частям Справочный материал и примеры к выполнению контрольной работы по математике

Предельный анализ в экономике - совокупность приемов исследования изменяющихся величин затрат или результатов при изменении объемов производства, потребления и т.п. на основе анализа их предельных значений. Большей частью плановые расчеты, основывающиеся на обычных статистических данных, ведутся в форме суммарных показателей. При этом анализ заключается главным образом в вычислении средних величин. Нахождение производительности труда

Экстремум функции Функция y=f ( x ) называется возрастающей ( убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство f (x 1 ) < f (x 2 ) ( f (x 1 ) > f (x 2 )). Пример . Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Раскрытие неопределенностей. Правило Лопиталя

Частные производные. Метод наименьших квадратов В экономике рассматриваются функции не только от двух, но и большего числа независимых переменных. Например, уровень рентабельности R зависит от прибыли П на реализованную продукцию, величин основных ( a ) и оборотных ( b ) фондов, R = П/( a+b ), т.е. R является функцией трех независимых переменных R = f (П, a , b ). Частными производными второго порядка функции z = f ( x , y ) называются частные производные от ее частных производных первого порядка. Если первая производная была взята, например, по аргументу x , то вторые производные обозначаются символами .

Пример. Исследовать функцию z = y 4 - 2xy 2 + x 2 + 2y + y 2 на экстремум. Отыскание уравнения прямой по эмпирическим данным называется выравниванием по прямой, а отыскание уравнения параболы - выравниванием по параболе. В экономических расчетах могут встретиться также и другие функции. Довольно часто встречаются эмпирические формулы, выражающие обратно пропорциональную зависимость, графически изображаемую гиперболой. Тогда говорят о выравнивании по гиперболе и т.д.

Основные методы интегрирования Для интегрирования многих функций применяют метод замены переменной, или подстановки, позволяющий приводить интегралы к табличной форме. Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Последнее свойство называется теоремой о среднем значении. Пример. Найти ò tg x dx .

Использование интегралов в экономических расчетах Пример. Определить объем продукции, произведенной рабочим за третий час рабочего дня, если производительность труда характеризуется функцией f( t) = 3/(3t +1) + 4.

Пусть сила роста описывается некоторой непрерывной функцией времени d t = f(t), тогда наращенная сумма находится как S = P ex d t dt , а современная величина платежа P = S ex (- d t dt).

Дифференциальные уравнения Всякая функция, удовлетворяющая данному дифференциальному уравнению, называется его решением, или интегралом. Решить дифференциальное уравнение - это значит найти все его решения. Если для искомой функции y нам удалось получить формулу, дающую все решения данного дифференциального уравнения и только их, то мы говорим, что нашли его общее решение, или общий интеграл. Пример. Найти общее решение уравнения y ¢ = 3x.

Пусть национальный доход Y возрастает со скоростью, пропорциональной его величине: ,

и пусть, кроме того, дефицит в расходах правительства прямо пропорционален доходу Y (при коэффициенте пропорциональности q ). Решить уравнение y ¢¢¢ = cos x. Решить уравнение y ¢¢ - y = 0.

Решение. Характеристическое уравнение имеет вид k 2 - 1 = 0, корни которого k 1 = 1, k 2 = -1 действительны и различны.

Разностные уравнения На практике простейшие разностные уравнения возникают при исследовании например величины банковского вклада. Эта величина является переменной Y x , представляющей сумму, которая накапливается по установленному закону при целочисленных значениях аргумента x . Пусть сумма Y o положена в банк при условии начисления 100 r сложных процентов в год. Пусть начисление процентов производится один раз в год и x обозначает число лет с момента помещения вклада ( x = 0, 1, 2,...). Обозначим величину вклада по истечении x лет через Y x . Обыкновенным разностным уравнением называется уравнение, связывающее значения одного независимого аргумента x , его функции Y x и разностей различных порядков этой функции D Y x , D 2 Y x, D 3 Y x,.... Такое уравнение можно записать в общем виде следующим образом:j ( x , Y x , D Y x , D 2 Y x D 3 Y x, D n Y x ) = 0, (10.1)

Производная функции y = f ( x ) может также обозначаться одним из следующих способов: В физике производную по времени t часто обозначают точкой:

Расчет характеристик надежности Надежность информационных систем Типовые примеры и их решения