Применение пределов в экономических расчетах

Производная, правила и формулы дифференцирования

Пусть функция y = f(x) определена в промежутке X. Производной функции y = f(x) в точке х o называется предел

= .

Если этот предел конечный, то функция f(x) называется дифференцируемой в точке x o ; при этом она оказывается обязательно и непрерывной в этой точке.

Если же рассматриваемый предел равен ¥ (или - ¥ ), то при условии, что функция в точке х o непрерывна, будем говорить, что функция f(x) имеет в точке х o бесконечную производную. Вычисление интегралов Кривая L задана параметрически : x =(t), y = (t), z = (t), t1tt2 . 

Производная обозначается символами

y ¢ , f ¢ (x o ),  .

Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том ,ч то производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке х o ; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент t o.

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) ' = 0, (cu) ' = cu';

2) (u+v)' = u'+v';

3) ( uv )' = u'v+v'u;

4) (u/v)' = (u'v-v'u)/v 2;

5) если y = f(u), u = j (x), т.е. y = f( j (x)) - сложная функция, или суперпозиция, составленная из дифференцируемых функций j и f, то , или

;

6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем ¹ 0, то .

В качестве примера найдем изображение по Лапласу типовых сигналов. Для теоретических и экспериментальных исследований характеристик электрических цепей и передачи сообщений по каналам связи используются различные типы сигналов: гармониче­ские колебания, уровни постоянных напряжений, последователь­ность прямоугольных импульсов и так далее.
Физический смысл производной