Применение пределов в экономических расчетах

Экстремум функции

Пример . Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy . Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a . Поэтому y = a - 2x и S = x ( a - 2x), где 0 £ x £ a /2 (длина и ширина площадки не могут быть отрицательными). S ¢ = a - 4x, a - 4x = 0 x = a/4, откуда
y = a - 2 × a/4 =a/2. Поскольку x = a /4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x < a /4 S ¢ >0, а при x > a /4 S ¢ <0, значит, в точке x=a /4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 ( кв . ед ).

Поскольку S непрерывна на [0, a /2] и ее значения на концах S(0) и S( a /2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x. Ранг матрицы как максимальное число линейно независимых строк (столбцов).

Пример. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 p » 50 м 3. Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2 p R(R+Н). Мы знаем объем цилиндра V = p R 2 Н Þ Н = V/ p R 2 =16 p / p R 2 = 16/ R 2. Значит, S(R) = 2 p (R 2 +16/R). Находим производную этой функции:
S ¢ (R) = 2 p (2R- 16/R 2 ) = 4 p (R- 8/R 2 ). S ¢ (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

В книге «Основы математики и ее приложения в экономическом образовании» изложены необходимые основы математического аппарата и примеры его использования в современных экономических приложениях: математический анализ функций одной и нескольких переменных, элементы линейной алгебры, основы теории вероятностей и математической статистики, элементы линейного программирования и оптимального управления.
Физический смысл производной