Применение пределов в экономических расчетах

Частные производные. Метод наименьших квадратов.

Частными производными второго порядка функции z = f ( x , y ) называются частные производные от ее частных производных первого порядка. Если первая производная была взята, например, по аргументу x , то вторые производные обозначаются символами .

Пусть функция z = f ( x , y ) определена в области D и точка M o ( x o , y o ) будет внутренней точкой этой области. Говорят, что функция f ( x , y ) в точке M o ( x o , y o ) имеет максимум ( минимум ), если ее можно окружить такой окрестностью

( x o - d , x o + d ; y o - e , y o + e ),

чтобы для всех точек этой окрестности выполнялось неравенство

f( x,y ) £ f( x o,y o ) ( f( x,y ) ³ f( x o,y o )). Четность функций математика решение задач

Функция многих переменных может иметь максимум или минимум (экстремум) только в точках, лежащих внутри области определения функции, в которой все ее частные производные первого порядка равны нулю или не существует хотя бы одна из них. Такие точки называются критическими. Названные условия являются необходимыми условиями экстремума, но еще не достаточными (они могут выполняться и в точках, где нет экстремума). Чтобы критическая точка была точкой экстремума, должны выполняться достаточные условия. Сформулируем достаточные условия эк c тремума для функции двух переменных. Пусть точка M o ( x o , y o ) - критическая точка функции z = f ( x , y ), т.е. , и функция
z = f ( x , y ) имеет непрерывные вторые частные производные в некоторой окрестности точки M o ( x o , y o ). Обозначим . Тогда:

1) если D > 0, то функция z имеет экстремум в точке M o : максимум при A < 0, минимум при A > 0;

2) если D < 0, то экстремума в точке M o нет;

3) если D = 0, то требуется дополнительное исследование.

В книге «Основы математики и ее приложения в экономическом образовании» изложены необходимые основы математического аппарата и примеры его использования в современных экономических приложениях: математический анализ функций одной и нескольких переменных, элементы линейной алгебры, основы теории вероятностей и математической статистики, элементы линейного программирования и оптимального управления.
Физический смысл производной