Элементы квантовой физики атомов, молекул и твердых тел

Оптическая физика

Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гейзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Y(х, у, z, t), так как именно она, или, точнее, величина |Y|2, определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами х и x+dx, у и y+dy, z и z+dz. Taк как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

  (217.1)

где ћ=h/(2p), т—масса частицы, D—оператор Лапласа  i — мнимая единица, U (х, у, z, t) — потенциальная функция частицы в силовом поле, в котором она движется, Y(х, у, z, t) — искомая волновая функция частицы.

Найти частоту малых свободных колебаний w0 физического маятника – тела произвольной формы, закрепленного на горизонтальной оси, не проходящей через его центр тяжести. Момент инерции тела относительно этой оси равен J, его масса m, а расстояние от оси до центра тяжести тела равно b.

Решение При отклонении тела от положения устойчивого равновесия (ось вращения и центр тяжести находятся на одной вертикали) появляется момент силы тяжести, действующей на тело, направленный против вектора его углового смещения a. Уравнение динамики вращательного движения твердого тела относительно закрепленной оси будет иметь вид: .

Знак минус здесь обусловлен тем, что направления векторов момента силы тяжести и углового смещения при любом положении тела противоположны. Как мы видим, данное дифференциальное уравнение не является линейным. Однако при малых углах (a << 1) sina » a) и уравнение приобретает знакомую форму (2.1):

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) производные  должны быть непрерывны; 3) функция |Y|2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) , или в комплексной записи . Следовательно, плоская волна де Бройля имеет вид

 (217.2)

(учтено, что w = E/ћ, k=p/ћ). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Y|2, то это (см. (217.2)) несущественно. Тогда

откуда

  (217.3)

Используя взаимосвязь между энергией Е и импульсом р (E=p2/(2m)) и подставляя выражения (217.3), получим дифференциальное уравнение

которое совпадает с уравнением (217.1) для случая U=0 (мы рассматривали свободную частицу). Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь между Е и р (для данного случая p2/(2m)=E–U), прядем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость Y от времени, иными словами, найти уравнение Шредингера для стационарных состояний — состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U=U(x, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая — только времени, причем зависимость от времени выражается множителем , так что

  (217.4)

где Е — полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель  и соответствующих преобразований придем к уравнению, определяющему функцию y:

  (217.5)

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями y. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором — о дискретном спектре.

Фотоэффект, его законы занимают особое место в истории физики. Явление фотоэффекта было одним из основных среди явлений, исследование которых привело к созданию квантовой теории вообще и квантовой теории света в частности. Сущность явления внешнего фотоэффекта и его главные закономерности заключаются, как известно, в следующем: под действием электромагнитного излучения наблюдается испускание (эмиссия) электронов из металлов
Металлы, диэлектрики и полупроводники