Дифференциальное и интегральное исчисление Неопределенный интеграл Функция нескольких переменных

Математика контрольная примеры решения задач

Интегрирование дифференциального уравнения геометрически означает нахождение кривых, у которых направление касательной в каждой точке совпадает с направлением поля.

Метод наименьших квадратов

Пусть проводится n однородных испытаний или экспериментов, и результатом каждого испытания является пара чисел – значений некоторых переменных x и y. Испытание с номером i приводит к числам xi,yi. В качестве испытания можно, например, рассматривать выбор определенного предприятия в данной отрасли промышленности, величиной x считать объем производства продукции (например в миллионах рублей), величиной y – объем экспорта этого вида продукции (в миллионах рублей), и обследовать n предприятий отрасли.

Итогом этих испытаний является таблица:

. . .

. . .

где каждому числу xi (величину  рассматриваем как независимый показатель или фактор) поставлено в соответствие число  (величину  рассматриваем как зависимый показатель – результат). Приближенный метод интегрирования систем дифференциальных уравнений первого порядка

В качестве значений  часто рассматриваются моменты времени: t1,t2,...,tn, взятые через равные промежутки. Тогда таблица

. . .

. . .

называется временным рядом.

Нас интересует вопрос, как найти приближенную формулу для функции y=f(x), которая “наилучшим образом” описывала бы данные таблицы.

Пусть точки с координатами (xi,yi) группируются на плоскости вдоль некоторой прямой. Задача заключается в том, чтобы найти параметры a0 и a1 этой прямой:

 y=a0+a1x, (1)

причем это нужно сделать так, чтобы она лучше любой другой прямой соответствовала расположению на плоскости экспериментальных точек (xi,yi).

Для изображения поля направлений, задаваемого дифференциальным уравнением, рассматривают линии уровня функции f(x, y), т.е. геометрические места точек, в которых касательные к интегральным кривым сохраняют постоянное направление. Такие линии называются изоклинами.
Дифференциальные уравнения